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Abstract
In the last decade, Convolutional Neural Networks (CNNs) have been the de facto approach for automated medical image 
detection. Recently, Vision Transformers have emerged in computer vision as an alternative to CNNs. Specifically, the 
Shifted Window (Swin) Transformer is a general-purpose backbone that learns attention-based hierarchical features and 
achieves state-of-the-art performances in a variety of vision tasks. In this work, for the first time, we design and experiment 
transformer-based models for mass detection in digital mammograms leveraging Swin transformer as a backbone multiscale 
feature extractor. Experiments on the largest publicly available mammography image database OMI-DB yield a True Positive 
Rate (TPR) of 75.7% at 0.1 False Positives per Image (FPpI) for the best transformer model, with 2.5% TPR improvement 
over its convolutional counterpart and a massive 7.4% TPR over the state-of-the-art. We also combine transformer- and 
convolution-based detectors with weighted box fusion, achieving an additional 2.4% TPR improvement reaching 78.1% 
TPR at 0.1 FPpI.
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1 Introduction

In 2020, female breast cancer was the most commonly 
diagnosed cancer, with an estimated 2.3 million new cases 
( 11.7% ) and 685,000 deaths globally, representing the lead-
ing cause of cancer deaths among women (Sung et al. 2021). 
Mammography, despite known limitations, is still the most 
commonly used imaging technique for early detection of 

breast cancer in women over the age of 40 (CDC 2022). 
Standard mammographic screening consists of mediolateral 
oblique (MLO) and craniocaudal (CC) low-energy x-ray 2D 
projection images of each breast to detect suspicious lesions 
like masses, which appear with characteristic shape and con-
tour (see Fig. 1). Studies have shown a mortality reduction 
of about 40% after the implementation of mammography 
screening (Sankatsing et al. 2017). However, since mass 
detection is a manual and difficult process, a significant 
proportion of breast masses are missed (Wang et al. 2014). 
Computer-Aided Detection (CADe) systems based on Arti-
ficial Intelligence (AI) technologies can assist radiologists in 
the detection and localization of masses or other anomalies. 
Studies on the efficiency of using CADe systems as sec-
ond opinion reveal that they can benefit even experienced 
radiologists by increasing their sensitivity from 77 to 85% 
and beginner radiologists from 62 to 86% (Balleyguier et al. 
2005). However, the use of these systems and in general of 
AI in medicine can introduce social and ethical challenges 
to security, privacy, and human rights, which deserve atten-
tion and investigation (Rajpurkar et al. 2022; Johnson et al. 
2021).

With significant advancements in the development 
of deep learning technologies over the last ten years, 
CADe systems have been predominantly built using 
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Convolutional Neural Networks (CNNs) (Malliori and 
Pallikarakis 2022). However, the tremendous success of 
transformer architectures in Natural Language Processing 
(NLP) has led researchers to explore its adaptation to com-
puter vision where it has emerged as a viable alternative to 
CNNs after the inception of Vision Transformers (ViT) in 
the seminal work of Dosovitskiy et al. (2020). Valanarasu 
et al. (2021) concluded that ViT’s self-attention processes 
are more effective than conventional CNNs at capturing 
both local and distant visual dependencies. Therefore, the 
medical imaging community has witnessed an exponential 
growth of the number of transformer-based approaches 
focusing on classification and segmentation tasks (Sham-
shad et al. 2022), whereas detection methods still rely on 
convolutional backbones for feature extraction [e.g. DETR 
(Zhu et al. 2020)].

The goal of this study is to explore the use of transform-
ers as backbone feature extractors for mass detection in 
mammography, and to compare and combine them with 
their convolutional counterparts. The key contributions of 
this paper are summarized as follows: 

1. proposal of a mass detection framework leveraging a 
hierarchical transformer as a backbone multiscale fea-
ture extractor;

2. comparison of transformer models with their convolu-
tional counterparts;

3. combination of detection predictions from transformer 
models, their convolutional counterparts, and both;

4. comparison with state-of-the-art on the largest publicly 
available mammography image database OMI-DB.

2  Related Work

From the early 1990s, academic and business circles have 
set off a research to develop computer-aided detection and 
diagnosis technologies that can act as a second opinion 
or helper for radiologists. This research began with pure 
image processing techniques (Heath et al. 2000; Petrick 
et al. 1996; Te Brake and Karssemeijer 1999), including 
approaches to select regions of interest like breast-air 
(Méndez et al. 1996; Petrick et al. 1999) and pectoral mus-
cle (Ferrari et al. 2004; Kwok et al. 2004; Molinara et al. 
2013) segmentation, and later moved to Machine Learn-
ing (ML) based on handcrafted features. Ke et al. (2010) 
used bilateral comparison to detect the mass and the center 
of region of interest (ROI), followed by the calculation 
of fractal dimension and two-dimensional entropy as the 
texture features. Lastly, the type of ROI was classified by 
Support Vector Machine (SVM) as mass or normal region. 
The method achieved a sensitivity of 85.11% at 1.44 false 
positives per image (FPpI), in a total of 106 mammograms. 
Patel et al. (2019) presented an effective approach to detect 
masses in breast images using Modified Histogram based 
Adaptive Thresholding (MHAT) method, testing it on 
more than 100 mammograms obtaining a TPR of 98.3% at 
0.78 FPpI. Years later, in the work of Mughal et al. (2017), 
texture features were also used along with color features to 
detect and classify masses. Methods such as region grow-
ing were also proposed as in Punitha et al. (2018). This 
work used an optimized region growing technique where 
the initial seed points and thresholds were optimally gener-
ated using a swarm optimization technique called Dragon 

Fig. 1  Mammogram images from OMI-DB containing masses marked with bounding boxes. Conspicuity levels decreasing from left to right: 
obvious, subtle, occult
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Fly Optimization. Features were then extracted from the 
detected masses and inputted to a feed-forward neural net-
work for classification. The approach achieved a sensitiv-
ity of 98.1% with specificity of 97.8% , using 300 images 
from the Digital Database for Screening Mammography 
(DDSM).

Lbachir et al. (2021) proposed a full CAD system for 
mass detection and diagnosis applying ML techniques. 
Firstly the image went through a preprocessing step for 
image enhancement and noise removal, followed by the 
segmentation of abnormalities using their proposed Histo-
gram regions analysis-based K-means. False positives were 
then reduced using texture and shape features inputted to a 
bagged trees classifier and the abnormalities finally classi-
fied by a SVM as malignant or benign. The system was able 
to achieve a 90.85% TPR at 0.65 FPpI and a 90.44% clas-
sification accuracy on the CBIS-DDSM dataset.

Recently, deep learning models employed in computer 
vision such as convolutional backbones [ResNet (He et al. 
2016a), DenseNet (Huang et al. 2017), etc.] and convolu-
tional anchor-based object detection heads [Faster R-CNN 
(Ren et al. 2015), RetinaNet (Lin et al. 2017), YOLO (Red-
mon et al. 2016a), etc.], have contributed to significant 
improvements in the performance of CADe systems. Ribli 
et al. (2018) used Fast R-CNN on a subset of the INbreast 
database to detect and classify malignant and benign lesions, 
achieving 90.0% TPR at 0.30 FPpI. Agarwal et al. (2020) 
presented for the first time the benchmark of the perfor-
mance of deep learning on the largest publicly available 
mammography image database OMI-DB (Halling-Brown 
et al. 2020). In their work, a framework based on Faster 
R-CNN achieved 87.0% TPR at 0.84 FPpI on a subset of 
7245 images acquired with Hologic scanners. Cao et al. 
(2021) proposed an anchor-free convolutional model for 
mass detection along with a new data augmentation tech-
nique to overcome overfitting based on local elastic deforma-
tion which enhanced the performance of their model at the 
cost of slower computational speed. This approach lever-
aged an enhanced, anchor-free version of RetinaNet named 
Feature Selective Anchor-Free (FSAF) (Zhu et al. 2019) 
previously proposed in computer vision research, achieving 
93.0% TPR at 0.50 FPpI on INbreast. Yu et al. (2022) pro-
posed a hybrid framework which relied on traditional image 
processing and deep learning techniques. The framework 

consisted of three main modules: (i) pre-processing, where 
an improved Deeplabv3+ model for pectoral muscle removal 
was employed; (ii) a multiple-level thresholding segmenta-
tion method to extract candidate mass patches; and (iii) clas-
sification into breast mass and breast tissue background by 
trained deep learning models. On CBIS-DDSM, the method 
achieved a TPR of 87% at 2.86 FPpI, whereas it reached 96% 
on INbreast with an FPpI of 1.29. In the work of Yan et al. 
(2021), a multitasking framework for breast mass detection 
that combined CC and MLO mammograms was proposed. 
An image detection pipeline based on YOLOv3 region pro-
posals was followed by a Siamese network that integrated 
patch level mass vs. non mass classification and dual view 
mass matching. This approach was evaluated on the INbreast 
dataset reaching a 96% TPR at 0.26 FPpI. Aly et al. (2021) 
proposed an end-to-end CADe system based on YOLOv3 
with k-means generated anchors, which is an improved 
version of the network proposed by Redmon et al. (2016b) 
and achieved 92% TPR at 0.086 FPpI on the INbreast data-
set. Aiming to mitigate the presence of excessive negative 
boxes in anchor-based detection techniques, an anchor-
free YOLOv3 was presented by Zhang et al. (2022). This 
method achieved a 95% TPR at 1.7 FPpI on the INbreast 
dataset outperforming the traditional YOLOv3 network. Su 
et al. (2022) proposed a double shot model that combined 
YOLOV5 and Local–Global (LOGO) transformers for mass 
detection and segmentation, using the first to place and crop 
the breast mass in mammograms followed by the segmenta-
tion performed with a gated axial-attention mechanism and 
LOGO training strategy. The proposed model was evaluated 
on two independent mammography datasets (CBIS-DDSM 
and INbreast) where it achieved a TPR of 95.7% and mean 
average precision of 65.0%.

Approaches using transformers have just begun to appear 
in the literature of mass detection and breast imaging in gen-
eral. Kamran et al. (2022) introduced Swin Spatial Feature 
Transformer Network (Swin-SFTNet), a U-net-shaped trans-
former-based architecture, that outperforms state-of-the-art 
architectures in breast mammography-based micro-mass 
segmentation. This method was evaluated on three publicly 
available datasets, achieving a segmentation dice improve-
ment over the state of the art by 3.10%, 3.81%, and 3.13% on 
CBIS-DDSM, INbreast, and CBIS, respectively. Chen et al. 
(2022) proposed a Multi-view Vision Transformer archi-
tecture able to separately learn patch relationships between 
four mammograms acquired from two-views (CC/MLO) of 
two-side (right/left) breasts, by employing local and global 
transformer blocks. Their proposed transformer-based model 
was evaluated on a private dataset including 470 malignant 
and 479 benign cases with an area under the ROC curve of 
0.818, statistically significantly outperforming the state-of-
the-art multi-view CNNs.

Table 1  Counts of the dataset used in this work

Patients Images Abnormal Normal

OMI-H-MD 1945 7626 3526 4100
Training 1361 5339 2478 2861
Validation 195 766 349 417
Test 389 1521 699 822
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3  Materials

3.1  Dataset

OMI-DB is an extensive mammography image database 
composed of more than 2.5 million images from over 
170,000 women that were collected from three UK breast 
screening centres (Halling-Brown et al. 2020). It provides 
digital mammograms in DICOM format from detected can-
cers along with normal and benign screening cases. The 
database contains images from different scanner manufac-
turers such as Hologic Inc., Siemens, Philips, and General 
Electric Medical Systems. For this study, images from Hol-
ogic Inc. scanners were selected as they represented the vast 
majority of images in the dataset. From here, we extracted 
the largest possible subset suited for mass detection, hereaf-
ter referred to as OMI-H-MD. It consists of 7, 626 DICOM 
’for presentation’ screening mammograms from 1,  945 
patients, with both detected masses (positive or abnormal 
images) and without any abnormality (negative or normal 
images), see Table 1. Careful visual inspection of all the 
selected images was performed, ensuring to discard images 
with artifacts or unwanted objects such as implants, marker 
clips or bands across the image. The following criteria were 
adopted for selecting normal images: (i) when multiple stud-
ies for same patient were available, only the images from the 
first study were considered; (ii) normal images belonging to 

a patient with abnormalities, even if they were present on a 
different breast or in a different study, were not considered; 
(iii) normal images belonging to a study with only one breast 
or one view were not considered routine screening and thus 
they were discarded.

3.2  Data preparation

The OMI-H-MD dataset was divided into training, valida-
tion and test sets on patient basis to guarantee that images 
from a particular case belonged exclusively to one of the 
three subsets. The division was performed as in Agarwal 
et al. (2020) on a 70-10-20 ratio (see Table 1). It is worth 
mentioning that even though the amount of images and 
patients in our dataset is very close to that of their work, it 
is not an exact match.

All mammograms were converted to 8-bit three-channel 
PNG images using channel-replication which is widely 
adopted in medical imaging for finetuning networks pre-
trained on natural images (Tajbakhsh et al. 2016; Zhou et al. 
2017). Pixel resolution was downsampled at 200μm for faster 
processing like in Agarwal et al. (2020). In addition, useful 
breast areas were cropped by applying triangle binarization 
followed by largest connected component selection. All 
crops were visually checked and manually corrected when 
necessary ( < 1% of cases).
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Fig. 2  Swin Transformer backbone architecture for multiscale fea-
ture extraction on mammograms with detailed stage substeps: a patch 
merging; b Swin transformer block with window self attention; c 

Swin transformer block with shifted window self attention allowing 
the four colored patches previously belonging to four distinct win-
dows to attend each other
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4  Methodology

We propose using a general-purpose hierarchical vision 
transformer backbone as multiscale feature extractor, the 
Shifted Window (Swin) Transformer, initialized with Ima-
geNet pre-trained weights. Then, we combine it with two 
object detection heads initialized with COCO pre-trained 
weights and we fine-tune the two architectures on our task. 
Finally, we propose fusing the predictions of the two detec-
tors, their convolutional-backbone counterparts, and both 
to investigate whether convolutional-based and transformer-
based detectors can complement each other and provide 
an overall boosted detection performance. In the sections 
below are described: (i) the ImageNet and COCO datasets on 
which the backbone and detection heads were pretrained; (ii) 
the selected transformer backbone; (iii) the object detection 
heads; and (iv) the bounding boxes fusion approach.

4.1  ImageNet and COCO datasets

ImageNet (Deng et  al. 2009) is a large visual database 
consisting of more than 14 M images manually annotated 
according to nearly 20,000 categories. Since the seminal 
work of Krizhevsky et al. (2017) who introduced the Ima-
geNet 2012 Challenge winner AlexNet, all major proposed 
deep learning backbones are trained on ImageNet and are 
publicly and freely available for fine-tuning.

Microsoft Common Objects in Context (COCO) is a 
large-scale image dataset that gathers 328,000 images of 
complex everyday scenes containing common objects in 
their natural context. The dataset contains 91 object cat-
egories along with bounding box and segmentation mask 
annotations which are useful to train deep learning models 
for object detection and instance segmentation.

4.2  Swin transformer

Swin (Shifted window) transformer is a hierarchical vision 
transformer capable of serving as a general purpose back-
bone for computer vision (Liu et al. 2021b). Previous vision 
transformers like ViT (Dosovitskiy et al. 2020) were based 
on global self-attention between non overlapping, medium-
sized (e.g. 16× 16 pixels) image patches at a fixed scale, 
which is unsuitable for high resolution images and dense 

tasks like image segmentation and detection, being also 
computationally limited by its quadratic complexity. In con-
trast, Swin uses a window-based approach combined with 
window-shifting at various scales that limits the computation 
of self attention among small (4× 4 pixels) patches within 
nonoverlapping windows while also allowing cross-window 
connection. This yields linear complexity to image size and 
makes Swin suitable for dense vision tasks as well. To this 
date, Swin and its variants are the backbone architectures 
of state-of-the-art image classification (Liu et al. 2021a), 
semantic segmentation (Liu et al. 2021a; Wei et al. 2022), 
instance segmentation (Li et al. 2022), and object detection 
(Liu et al. 2021a; Zhang et al. 2022) methods. All the above-
mentioned aspects, and in particular the capability to extract 
hierarchical multiscale attention features achieving state-of-
the-art performances in dense computer vision tasks, make 
Swin the optimal backbone for our transformer-based mass 
detection framework.

4.2.1  Overall architecture

The mammogram is firstly split into non overlapping patches 
of 4 × 4 pixels. The raw pixel values of each patch are con-
catenated into feature vectors of dimension 4 × 4 × 3 = 48 
and projected to an embedding of size C by a linear layer. 
These embedded patches are processed by subsequent stages 
i = 1, 2, ...,N that alternate local self-attentions within win-
dows and patch merging to achieve multiscale hierarchical 
feature extraction. In the following, these two fundamental 
blocks are detailed. An overview of the entire architecture 
is presented in Fig. 2.

Shifted-window self-attention The role of this block is 
to learn local attention features at the scale determined 
by its position i in the stages sequence. It consists of ni 
alternations of window multihead self-attention (W-MSA) 
and shifted-window multihead self-attention (SW-MSA), 
each followed by a 1-hidden layer MLP with expansion 
factor � = 4 and GELU activation. In the W-MSA mod-
ule, attention is limited to a window that contains M ×M 
patches (see Fig. 2b). In the SW-MSA module, the same 

Table 2  Swin architecture variants

Model C layers {ni} #heads #param

Swin-T 96 {2, 2, 6, 2} 3 × 4 29M
Swin-S 96 {2, 2, 18, 2} 3 × 4 50M
Swin-B 128 {2, 2, 18, 2} 4 × 4 88M
Swin-L 192 {2, 2, 18, 2} 6 × 4 197M

Fig. 3  Illustration of NMS and WBF outcomes for an ensemble of 
inaccurate predictions (blue: different models predictions; yellow: 
groundtruth)
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windowing scheme is shifted by (M
2

 , M
2
) to allow patches 

previously belonging to different windows to attend each 
other being now in the same window (see Fig. 2c). Layer 
normalization and skip connections are applied before and 
after each module, respectively, like in traditional vision 
transformers.

Patch merging The role of this block is to perform a 
downsampling-like operation similar to pooling in convo-
lutional networks. To this end, groups of 2 × 2 neighboring 
patches are concatenated and forwarded to a linear layer 
that reduces the input dimensionality by a factor of 2. For 
example, in the first patch merging block, each patch is 
encoded into a vector of size C, thus the 4C-dimensional 
concatenated patches are reduced to 2C-dimensionality 
(see Fig.  2a). In the second patch merging block, the 
8C-dimensional concatenated patches are reduced to 
4C-dimensionality, and so on. Similar to convolutional 
networks, the the number of features increases together 
with the reduction along the spatial dimensions.

4.2.2  Architecture variants

We used the same architecture variants as the ones pro-
posed in Liu et al. (2021b) to take advantage from their 
available ImageNet-pretrained models. The Swin base 
model (Swin-B) was built to have similar size and com-
putation complexity as ViT-B. Three variants of the base 
model were introduced: Swin tiny (Swin-T), Swin small 
(Swin-S), and Swin large (Swin-L) which have around 
0.25× , 0.5× and 2 × the complexity and size of Swin-B, 
respectively. The architectures and their corresponding 
hyperparameters are provided in Table 2.

4.3  Object detection methods

In this study, we employ two object detection methods and 
then merge their predictions. The first, RepPoints (Yang 
et al. 2019), was used by the authors of the Swin Trans-
former achieving state-of-the-art object detection perfor-
mance on COCO (Liu et al. 2021b). The second, Deform-
able Detection Transformer (DETR) (Zhu et al. 2020), is 
a novel transformer-based object detection model, which 
we found promising to combine with a transformer-based 
backbone. In the following, the two object detection heads 
are briefly illustrated.

4.3.1  RepPoints

RepPoints (Yang et  al. 2019) is an anchor-free object 
detector which proposes a representation of objects as a 

set of sample points, suitable for both localization and rec-
ognition. The representative points learn to automatically 
organize themselves in a manner that bounds the spatial 
extent of an object and highlights semantically meaningful 
local areas when groundtruth localization and recognition 
targets are given for training. The training of RepPoints 
is driven jointly by object localization and recognition 
targets, such that the RepPoints are tightly bound by the 
groundtruth bounding box and guide the detector toward 
correct object classification.

4.3.2  Deformable DETR

DETR (Carion et al. 2020) is an end-to-end transformer-
based object detection framework mainly characterized by 
the use of a set-based global loss which enforces unique 
predictions via bipartite matching and a transformer 
encoder–decoder architecture. While DETR removes the 
need of hand-designed components such as anchor gen-
eration, which directly encodes the prior knowledge of the 
task, it also suffers from limited feature spatial resolution 
and slow convergence. Deformable DETR (DDETR) (Zhu 
et al. 2020) aims to mitigate DETR issues by combining the 
best of deformable convolutions sparse spatial sampling and 
Transformers relation modeling capability. It also proposes 
a deformable attention module which attends to a restricted 
number of sample locations as a pre-filter for significant 
key components out of all the feature map pixels. DDETR 
replaces transformer attention modules processing feature 
maps by multiscale deformable attention modules.

4.4  Weighted boxes fusion

We employ weighted boxes fusion (WBF) (Solovyev et al. 
2021) to merge predictions from different detectors. Unlike 

Table 3  Hyperparameters of the best detection models, star

Model Learning rate Optimizer Epochs WBF weight

RetinaNet/
ResNet-50

7.81 × 10−5 SGD 13 –

RepPoints/Swin-T 1.25 × 10−5 AdamW 19 2.0
RepPoints/Swin-B 1.25 × 10−5 AdamW 32 1.3
RepPoints/

ResNet-50
1.00 × 10−4 SGD 22 1.7

RepPoints/
ResNet-101

1.00 × 10−4 SGD 16 1.3

DDETR/Swin-T 1.25 × 10−5 AdamW 28 1.7
DDETR/Swin-B 1.25 × 10−5 AdamW 18 0.4
DDETR/

ResNet-50
1.25 × 10−5 AdamW 24 0.4

DDETR/
ResNet-101

1.25 × 10−5 AdamW 24 0.1
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Non-Maximum Suppression (NMS) and soft-NMS methods 
that discard part of the predictions, WBF uses the confidence 
scores of all proposed bounding boxes to generate the aver-
aged boxes (see Fig. 3) and is explicitly designed for ensem-
bling boxes from different object detection models. We used 
a grid search to find the optimal weight for each detector.

5  Experiments

Our experiments are divided into four stages: 

1. Baseline mass detector. We trained and tested a base-
line mass detector that reproduces the work of Agarwal 
et al. (2020) which set the benchmark on the OMI-DB 
database, the same used in our study. To this end, we 
combined a ResNet-50 (He et al. 2016b) backbone and 
RetinaNet (Lin et al. 2017) object detection head with 
anchor boxes initialized as suggested in Agarwal et al. 
(2020).

2. Mass detection with Swin Transformer backbones. 
We trained and tested the two selected object detection 
models (see Sect. 4.3) with two variants of the Swin 
Transformer architecture: Swin-T and Swin-B. We 
discarded Swin-S since it exhibited very similar per-
formances compared to the smaller and faster-to-train 
Swin-T throughout all experiments. In addition, we 
could not train Swin-L due to its large memory footprint 
exceeding the capability of our GPU.

3. Mass detection with convolutional backbones. We 
trained and tested the two selected object detection 
models with the convolutional backbones counterparts 
of Swin-T and Swin-B in terms of size and computa-
tional complexity, namely ResNet-50 and ResNet-101, 
respectively, as indicated in Liu et al. (2021b).

4. Fusion of predictions. We merged the predictions of 
mass detectors in three different scenarios: (i) detectors 
with Swin backbones only; (ii) detectors with convolu-
tional backbones only; and (iii) all detectors. This was 
done to assess whether convolutional-based and trans-
former-based backbones could complement each other 
by extracting different features and provide an overall 
boosted performance.

5.1  Implementation

Training of all models was done on one NVIDIA Tesla V100 
16 GB GPU. We used MMDetection (Chen et al. 2019), 
a PyTorch-based open source object detection toolset, to 
implement, train, and test all the architectures considered. 
MMDetection provides a collection of object detection 
models pretrained on the COCO dataset (Lin et al. 2014). 
Pretrained models of our selected object detection methods 

with a Swin Transformer backbone were not available, thus 
we used the pretrained ImageNet weights of Swin Trans-
former provided by the authors, along with our object detec-
tion methods pretrained with convolutional backbones for 
finetuning. Pretrained models of the object detection meth-
ods were available with convolutional backbones and were 
therefore used to finetune the convolutional models. In the 
view of the above, convolutional backbones had an advan-
tage over transformer backbones since the the former were 
pretrained for object detection on COCO, whereas the latter 
were pretrained only for image classification on ImageNet.

5.2  Data preprocessing

All images were resized such that the height and width were 
at most 800 and 1333 pixels, respectively, while keeping 
the original aspect ratio. Due to memory limitations, in the 
case of DDETR the maximum height and width were 600 
and 1000 pixels, respectively. In addition, pixel values were 
normalized to zero mean and unit standard deviation.

5.3  Data augmentation

During training, we applied with probability 50% one of the 
following data augmentation techniques to each incoming 
image: (i) horizontal flip; (ii) random crop; (iii) contrast 
transformation, with magnitude values of [0.4, 0.8, 1.5]; 
and (iv) brightness transformation, with magnitude values 
of [0.3, 0.7, 1.3]. For deeper backbones (Swin-B and Resnet 
101), the probabilities were increased to 60% . For the base-
line RetinaNet-based detector, we applied only horizontal 
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Fig. 4  Comparison between the FROC curve obtained by Agarwal 
et al. (2020) (taken from their paper) and our baseline detector
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flip as suggested in the reference work of Agarwal et al. 
(2020).

5.4  Training hyperparameters

All the models were trained for a maximum of 100 epochs 
in batches of 2 images using the backpropagation algorithm, 
two different optimizers (Stochastic Gradient Descent and 
AdamW (Loshchilov and Hutter 2017)) and learning rates 
in the range [10−3, 10−6] . The best model was selected as the 
one achieving the highest mean Average Precision (mAP) 
over IoU thresholds from 0.1 to 0.5 (step 0.05). This met-
ric was also used to monitor the performance and for early 
stopping, which occurred in all experiments between epoch 
13 and epoch 32. Each selected model was then assigned 

a weight in the WBF stage by performing a grid search on 
weights between 0.1 and 2 with a step of 0.3. Table 3 pre-
sents the details of the best models selected. All the optimi-
zations were carried out on the validation set.

5.5  Performance evaluation

To assess the performance of the compared methods, we 
calculated lesion-based free receiver operating characteris-
tic (FROC) curves that report the True Positive Rate (TPR) 
of the detected lesions versus the average number of False 
Positives per Image (FPpI) by varying the decision thresh-
old applied to the scores associated to the detected boxes. 
A predicted box was considered a true positive when its 
IoU with the groundtruth mass was equal or greater than 
10% following the criterion used in Agarwal et al. (2020). 
All predictions on normal images were counted as false 
positives.

From the FROC curves, two performance measures were 
extracted: (i) the area under the curve (AUC) in the FPpI 
range [0, 1] that is a widely adopted range for evaluating 
CADe systems and it is also used in Agarwal et al. (2020); 
and (ii) the TPR at FPpI=0.1 that can be a clinically use-
ful operating point considering that radiologists’ specificity 
ranges from 95 to 98% (Salim et al. 2020) which is orders of 
magnitude better than operating points near FPpI=1 com-
monly evaluated in the mass detection literature.

5.6  Statistical analysis

The bootstrap method (Samuelson and Petrick 2006) was 
applied to test the statistical significance of differences in 
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Fig. 5  Average FROC curves obtained from 10,000 bootstrap iterations comparing all detectors (left) and baseline, best convolutional-based, and 
best transformer-based detectors (right). Confidence bands (semi-transparent) indicate 95% confidence intervals along the TPR axis

Table 4  Performance results of single models averaged from 10,000 
bootstrap iterations

Highest performance for each column is marked in bold

Model AUC TPR

RetinaNet/ResNet-50 81.0% 68.3%

RepPoints/Swin-T 84.5% 73.7%

RepPoints/Swin-B ��.�% ��.�%

RepPoints/ResNet-50 84.0% 74.5%

RepPoints/ResNet-101 84.3% 73.2%

DDETR/Swin-T 80.4% 67.7%

DDETR/Swin-B 82.1% 70.8%

DDETR/ResNet-50 77.8% 68.6%

DDETR/ResNet-101 80.6% 69.5%
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AUC and TPR between the compared methods, as typically 
done when comparing CAD systems performances (Ma et al. 
2013; Hupse and Karssemeijer 2009; Bria et al. 2014; Mor-
dang et al. 2016; Kooi et al. 2017; Wang and Yang 2019). 

Patients were sampled with replacement 10,000 times, with 
each bootstrap containing the same number of patients as the 
original set. At each bootstrapping iteration, FROC curves 
were recalculated for each method, and ΔAUC and ΔTPR 

Fig. 6  Average FROC curves obtained from 10,000 bootstrap itera-
tions comparing transformer fusion with best single transformer 
model (top-left), convolutional fusion with best single convolutional 
model (top-right), transformer+convolutional fusion with best single 

transformer and convolutional models (bottom-left), and all fusion 
models (bottom-right). Confidence bands (semi-transparent) indicate 
95% confidence intervals along the TPR axis

Table 5  Performance results of fusion models averaged from 10,000 bootstrap iterations

Highest performance for each column is marked in bold

WBF Models fused AUC TPR

Transformer backbones RepPoints/Swin-T RepPoints/Swin-B DDETR/Swin-T DDETR/Swin-B 86.4% 76.3%

Convolutional backbones RepPoints/ResNet-50 RepPoints/ResNet-101 DDETR/ResNet-50 DDETR/ResNet-101 86.1% 76.4%

All backbones RepPoints/Swin-T RepPoints/Swin-B DDETR/Swin-T DDETR/Swin-B RepPoints/
ResNet-50 RepPoints/ResNet-101 DDETR/ResNet-50 DDETR/ResNet-101

��.�% ��.�%
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were evaluated for each pair of methods. p-values were com-
puted as the fraction of evaluated metrics populations that 
were negative or zero, corresponding to cases where the 
first method did not outperform the second method under 
comparison (null hypothesis). Performance differences were 
considered statistically significant if p < 0.05.

6  Results and discussion

6.1  Baseline

In Fig. 4 the FROC curve originally published in the paper 
of Agarwal et al. (2020) and the FROC curve of our baseline 
mass detector are reported. It can be seen that the two curves 
are almost identical. Furthermore, Agarwal et al. (2020) 
reported TPR=0.87 at 0.84 FPpI while our model reaches 
TPR=0.88 at 0.84 FPpI. These results indicate that we were 
able to fully replicate the method and the results of Agarwal 
et al. (2020), thus it can be used as baseline for comparison 
with our proposed single and fusion models.

6.2  Single models

In Fig. 5 and Table 4 are reported the FROC curves and per-
formance results, respectively, of all experimented detectors 

to compare transformer-based and convolutional-based 
backbones. Statistical comparisons are reported in Table 6.

Comparison between transformer and convolutional 
backbones On average, transformer backbones provided 
+1.3% AUC and +0.5% TPR improvements over their con-
volutional counterparts. The best transformer-based model 
was RepPoints/Swin-B achieving 85.0% AUC and 75.7% 
TPR, with an improvement of +0.7% AUC ( p = 0.1985 ) 
and +2.5% TPR ( p = 0.0869 ) over the best convolutional-
based model RepPoints/ResNet-101. This suggests that 
transformer backbones are a viable and promising alter-
native to convolutional backbones for mass detection. We 
believe that transformers have further potential to exploit, 
considering that: (i) convolutional backbones benefited 
from pretrained convolutional-based object detection 
heads whereas transformer backbones were only pretrained 
for image classification; (ii) we used the Swin Transformer 
‘as is’ without modifying important architecture hyperpa-
rameters such as patch size, window size, and number of 
layers since that would have required training from scratch 
without pretrained weights, which in turns would have 
required a large amount of data; and (iii) an improved sec-
ond version of Swin capable of handling higher resolution 
images has been just released (Liu et al. 2021a) along with 
other general-purpose transformer backbones like Nested 

Table 6  Statistical comparisons in terms of AUC and TPR differences obtained from 10,000 boostrap iterations

Statistically significant differences (p-value < 0.05 ) are listed in bold

Description Model Compared to ΔAUC ΔTPR

Transformer backbones vs. convolutional backbones RepPoints/Swin-T RepPoints/ResNet-50 +0.5%(p = 0.2789) −0.8%(p = 0.6948)

RepPoints/Swin-B RepPoints/ResNet-101 +0.7%(p = 0.1985) +2.5%(p = 0.0869)

DDETR/Swin-T DDETR/ResNet-50 +�.�%(p = 0.0106) −0.9%(p = 0.6907)

DDETR/Swin-B DDETR/ResNet-101 +1.5%(p = 0.0608) +1.4%(p = 0.2464)

Deeper backbones vs. less deep backbones RepPoints/Swin-B RepPoints/Swin-T +0.5%(p = 0.2439) +2.0%(p = 0.1261)

RepPoints/ResNet-101 RepPoints/ResNet-50 +0.3%(p < 0.3571) −1.3%(p = 0.7969)

DDETR/Swin-B DDETR/Swin-T +�.�%(p = 0.0220) +�.�%(p = 0.0360)

DDETR/ResNet-101 DDETR/ResNet-50 +�.�%(p = 0.0013) +0.9%(p = 0.2910)

RepPoints vs. DDETR RepPoints/Swin-B DDETR/Swin-B +�.�%(p < 0.0018) +�.�%(� < �.����)

RepPoints/ResNet-101 DDETR/ResNet-101 +�.�%(p < 0.0001) +�.�%(� = �.����)

Our best single models vs. state-of-the-art RepPoints/Swin-B RetinaNet/ResNet-50 +�.�%(p < 0.0001) +�.�%(p < 0.0001)

RepPoints/ResNet-101 RetinaNet/ResNet-50 +�.�%(p < 0.0001) +�.�%(p = 0.0118)

RepPoints/ResNet-50 RetinaNet/ResNet-50 +�.�%(p < 0.0001) +�.�%(p = 0.0011)

WBF (transformer) vs. WBF (convolutional) WBF (transformer) WBF (convolutional) +0.3%(p = 0.2914) 0.0%(p = 0.5257)

WBF (single-kind) vs. best singlemodel WBF (convolutional) RepPoints/ResNet-101 +�.�%(p < 0.0001) +�.�%(p = 0.0064)

WBF (transformer) RepPoints/Swin-B +�.�%(p = 0.0088) +0.7%(p = 0.3442)

WBF (all) vs. best single models WBF (all) RepPoints/Swin-B +�.�%(p < 0.0001) +�.�%(p = 0.0421)

WBF (all) RepPoints/ResNet-101 +�.�%(p < 0.0001) +�.�%(p = 0.0007)

WBF (all) vs. WBF (single-kind) WBF (all) WBF (convolutional) +�.�%(p = 0.0010) +1.7%(p = 0.0984)

WBF (all) WBF (transformer) +�.�%(p < 0.0001) +�.�%(p = 0.0224)

Our best WBF model vs. state-of-the-art WBF (all) RetinaNet/ResNet-50 +�.�%(p < 0.0001) +�.�%(p < 0.0001)
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Hierarchical Transformer (NeST) (Zhang et al. 2022) and 
Pyramid Vision Transformer (PVT) (Wang et al. 2021).

Comparison between different depths Deeper backbones 
Swin-B and ResNet-101 yielded an average improvement 
of +1.4% AUC and +1.2% TPR over less deep backbones 
Swin-T and ResNet-50. This was an expected result, since 
deeper backbones are better suited to extract multiscale 
features from high resolution images like mammograms. 
The difference is higher when comparing Swin-T and 
Swin-B, the latter outperforming the former on average by 
+1.2% AUC and +2.6% TPR. We believe this is due to the 
different embedding size ( C = 96 for Swin-T and C = 128 
for Swin-B) which in turns leads to an increased number of 

attention heads for Swin-B (4 instead of 3 for each layer) 
and thus of features extracted. This makes promising try-
ing with Swin-L which has C = 192 and 6 heads per layer, 
however we could not train such a big model because of 
GPU memory limitations.

Comparison between different detection heads RepPoints 
detectors statistically significantly outperformed their 
DDETR counterparts, with an average improvement of 
+4.2% AUC and +5.1% TPR. This was due to the different 
resolutions of the input images (see Sect. 5.4), indicating 
that despite masses are orders-of-magnitude bigger than 
other mammographic lesions like calcifications that require 
full-resolution images to be detected, the impact of image 
downsampling on the overall mass detection performance is 
still not negligible. Another interesting result is the improve-
ment in AUC of transformer over convolutional backbones 
with DDETR ( +2.0% ) compared with the improvement with 
RepPoints ( +0.6% ), nearly three times smaller. This suggests 
that DDETR, being a transformer-based head, can benefit 
from transformer-extracted features more than RepPoints, 
which is a convolutional-based head. Thus the potential of 
DDETR combined with a transformer backbone could be 
fully disclosed when training with higher resolution.

Comparison with state-of-the-art mass detection Both 
transformer and convolutional backbones combined with 
RepPoints statistically significantly outperformed the base-
line reference method reproduced from the work of Agar-
wal et al. (2020). This can be appreciated qualitatively 
from Fig. 5 (right) and quantitatively from Tables 4,  5 
and 6 with an average increment of +3.5% AUC and +5.9% 
TPR over the baseline and a massive improvement of 
+4.0% AUC ( p < 0.0001 ) and +7.4% TPR ( p < 0.0001 ) 
yielded by the best model RepPoints/Swin-B. However, it 
must be noted that most of the improvement is provided 
by the RepPoints head, since with the same convolutional 
backbone (ResNet-50) RepPoints/ResNet-50 statistically 
significantly surpasses the baseline RetinaNet/ResNet-50 
by +3.0% AUC and +6.2% TPR. This suggests that object 
detectors based on point set representations, like Rep-
Points, are well suited for mass detection since they can 
account for the shape and positions of semantically impor-
tant local areas of the lesions, whereas detectors like Reti-
naNet consider equally all subregions within an anchor 
box impeding finer feature extraction.

6.3  Fusion models

In Fig. 6 and Table 5 are reported the FROC curves and 
performance results, respectively, of all fusion models. Sta-
tistical comparisons are reported in Table 6.

Fig. 7  FROC curves of the proposed method (WBF all backbones) 
with different IoU thresholds

Table 7  Computational complexity of all experimented models

TTpE Training Time per Epoch (in min), FLOPs FLoating point 
Operations Per Second

Model TTpE #param FLOPs

RetinaNet/ResNet-50 14.6 36 M 206 G
RepPoints/Swin-T 10.6 37 M 195 G
RepPoints/Swin-B 17.3 97 M 428 G
RepPoints/ResNet-50 7.8 37 M 190 G
RepPoints/ResNet-101 10.1 56 M 266 G
DDETR/Swin-T 18.8 39 M 516 G
DDETR/Swin-B 23.7 98 M 749 G
DDETR/ResNet-50 10.2 40 M 195 G
DDETR/ResNet-101 11.8 59 M 271 G
WBF (convolutional) 39.9 192 M 922 G
WBF (transformer) 70.4 271 M 1,888 G
WBF (all) 110.3 463 M 2,810 G
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Fusion of single-kind models WBF applied to the four 
detectors based on transformer backbones yielded an 
improvement of +1.4% AUC ( p = 0.0088 ) and +0.7% TPR 
( p = 0.3442 ) over the best single transformer model Rep-
Points/Swin-B. Similarly, WBF applied to the four detectors 
based on convolutional backbones yielded an improvement 
of +1.8% AUC ( p < 0.0001 ) and +3.2% TPR ( p = 0.0064 ) 
over the best single convolutional model RepPoints/
ResNet-101. The performances of the two fusion models 
were statistically significantly similar, with a negligible 
advantage of the transformer fusion over the convolutional 
fusion ( +0.3% AUC). In both cases, the positive impact of 
WBF can be qualitatively appreciated on the examples pre-
sented in Fig. 8, where it gives more accurate prediction 
coordinates and also discards wrong predictions.

Fusion of all models WBF applied to all eight detectors, 
both transformer- and convolutional-based, achieved an 
AUC of 87.4% and a TPR of 78.1% statistically signifi-
cantly surpassing the best single model RepPoints/Swin-B 
by +2.5% AUC and +2.4% TPR and the best single-kind 
fusion model that merged all transformer backbones by 
+1.0% AUC and +1.8% TPR. This result suggests that 
convolutional and transformer backbones extract differ-
ent features that complement each other when combined 
together. It also can be observed that the WBF weights 
(see Table 3, last column) assigned more importance to 
transformer backbones, with an aggregate of 5.4 com-
pared to 3.5 of the convolutional backbones, suggesting 
that the former had a more positive impact when perform-
ing the fusion of the predictions.

Robustness to higher IoU We carried out additional 
experiments to assess the performance of WBF applied 
to all models, while modifying the IoU threshold used 
to match a predicted box with a groundtruth mass (see 
Sect. 5.5). Previously we used IoU=0.1, whereas on this 
set of experiments we increase the threshold to 0.2, 0.25 
and 0.3. The obtained FROC curves are plotted in Fig. 7, 
from which it can be observed that these models exhibit 
similar performances, since there was no statistically sig-
nificant difference in AUC and TPR. At the same time, all 
of them still largely outperform the baseline model, which 
instead was evaluated with the more favorable IoU=0.1.

6.4  Computational complexity

We provide in Table 7 the computational complexity of all 
experimented models in terms of training time per epoch, 
number of learnable parameters, and floating point opera-
tions per second. Overall, transformer-based models exhib-
ited a nearly double computational complexity compared 
to convolutional-based models. This was mainly due by the 
contribution of the backbone Swin-B, which in Liu et al. 
(2021b) was reported to have more than triple computational 
complexity compared to the more lightweight backbone 
Swin-T.

Further, it was in general more difficult to train trans-
former models compared to convolutional models due to 
higher memory requirements with same input dimensions, 
time to convergence, and sensitivity to the chosen optimizer 
and learning rate configuration.

Fig. 8  WBF fusion of convolutional backbones (a) and transformer backbones (b). Groundtruth bounding box and fusion box are displayed in 
blue and yellow colors, respectively
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7  Conclusions

This study focuses on the detection of masses on digital 
mammograms using transformer-based architectures on 
the large-scale publicly available dataset OMI-DB. To 
our knowledge, the proposed work is the first to attempt 
implementing a transformer backbone for mass detection in 
mammograms, resulting in models that outperform previ-
ous state-of-the-art methods. It was shown that transformer-
based models can be pretrained on natural images and be 
successfully finetuned to detect masses in mammograms. 
The implemented models achieved promising results on this 
task and showed superior performances to their convolu-
tional counterparts. Compared to the state-of-the-art model 
previously proposed and tested on OMI-DB, our mass detec-
tion models achieved statistically significantly higher area 
under the FROC and sensitivity, up to 4.0% AUC and 7.4% 
TPR improvement obtained with a transformer backbone. 
Additionally, combining the predictions of both convolu-
tional and transformer models using weighted boxes fusion 
results in a massive improvement of 6.5% AUC and 9.8% 
TPR. These results well demonstrate the potential of trans-
former backbones in detection tasks on medical images, thus 
our future work will address the implementation and adapta-
tion of other transformer-based architectures that are quickly 
arising in the computer vision literature.
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